Physics I Forces

Newton's Laws of Motion

First law

FIGURE 1: Notes for the forces on a block of mass m on an inclined plane with base angle θ.

FIGURE 2: Notes for Newton's first law of motion
An object in motion will remain in motion at a constant velocity, and an object at rest will remain at rest unless acted on by an unbalanced force.
Newton's first law of motion clarifies that the velocity of an object will not change if the net force on it is zero. There will be no acceleration.

FIGURE 3

FIGURE 3 (

In each of the examples, the net force is zero, and so the acceleration is also zero.
The converse is also true: If the acceleration is zero, then the vector sum of the forces on the object must also be zero.

FIGURE 4
Object moving with a constan velocity

$F_{2} \vec{a}=0$, therefore, $\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=0$.

Second law

Newton's second law is known as the law of force. The acceleration of an object is dependent on the net force acting on the object and the object's mass. It is defined by the equation $F=$ ma. If an object with a mass of 5 g is hit with the same force as an object with a mass of 10 g , the objects will travel at differing speeds and distances.

The acceleration is directly proportional to the net force and inversely proportional to the object's mass. A suitcase with a mass of 15 kg requires less force to lift than a suitcase with a mass of 30 kg .

Third law

Handling misconceptions about Newton's third law of motion.

For every action, there is an equal and opposite reaction.

The third law refers to forces between pairs of objects that are interacting. The forces acting between the two objects will be equal in magnitude and opposite in direction.
The inclusion of the word "every" emphasizes that forces cannot occur in isolation. When forces are shown acting on an object, it is important to recall that every one of the forces omes from an object, and that object has an equal force acting on it in the opposite direction.
F_{1} and F_{2} are equal and in opposite directions, but they are not a third law force pair.They are forces from wo different objects (the table and Earth) acting on the book. Because the forces are balanced, the book will not move.

FIGURE 5

F_{1} and F_{1} are a third law force par The book and the table push against each other with equal force in opposite directions. It is difficult to imagine a table pushing, but it may help to think of a single wooden board with weight on it. It will bend in the middle and push back against the weight. The table will do this on a much smaller scale, but it does push back.
and F_{1} are a third law force pair Gravity from Earth pulls down on the book. Gravity from the book pulls up on Earth. The second note is difficult to imagine but all objects with mass attracteach oner with equal force. The way these forces affect the motion of the objects will be very different when the masses are very different, as in the case of the book and Earth.

